$\Gamma$ Function

The $\Gamma$ Function

We start with the following definition for the Gamma function:

$$\Gamma(n) := \int\limits_{0}^\infty x^{n-1} e^{-x} dx$$

Behavior of the $\Gamma$ function

show

The $\Gamma$ Function as an Infinite Product

show

Identities of the $\Gamma$ Function

show

$\Gamma(1+\epsilon)$ Expansion

show